

Edition 2.0 2017-10

INTERNATIONAL STANDARD

Global maritime distress and safety system (GMDSS) –
Part 3: Digital selective calling (DSC) equipment – Operational and performance requirements, methods of testing and required testing results

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.060.20; 47.020.70

ISBN 978-2-8322-4901-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	DREWORD		10
1	Scope		12
2	Normativ	ve references	12
3	Terms, c	definitions and abbreviated terms	14
	3.1 Te	rms and definitions	14
	3.2 Ab	breviated terms	17
4	Performa	ance requirements	18
	4.1 Ob	ject	18
		st requirements	
	4.2.1	General	18
	4.2.2	Test site	18
	4.2.3	Environment tests	18
	4.2.4	Environmental test procedure	19
	4.2.5	Performance checks	19
	4.2.6	Normal test conditions	21
	4.2.7	Extreme test conditions	
	4.2.8	Unspecified test conditions	
	4.2.9	General conditions of measurement	
	4.2.10	Artificial antennas	
	4.2.11	Standard test signals	
	4.2.12	Measurement uncertainty	
	4.2.13	Reference bandwidths for spurious measurements	
	4.2.14	Interpretation of measurement results	
	4.2.15	Testing method terminology	
	4.3 Fu	nctional requirements	
	4.3.1	User interface	
	4.3.2	Categories of calls	
	4.3.4	General purpose equipment characteristics	
	4.3.5	Construction	
	4.3.6	Memory	
	4.3.7	Warm-up period	
	4.3.8	Protection of the antenna input circuit	
	4.3.9	Protection of the transmitter	
	4.3.10	Antenna static protection	
	4.3.11	Safety precautions	31
	4.3.12	Compass safe distance	31
	4.3.13	Audio interface	31
	4.3.14	Activation of transmitter and maximum transmission time	32
	4.3.15	Data interface	32
	4.4 Op	erational requirements	36
	4.4.1	Basic requirements	
	4.4.2	Additional requirements	
	4.4.3	Distress alerts	
	4.4.4	Other calls	
	4.4.5	Self-identification	
	4.5 Sc	anning efficiency	45

		-
4.5.1	Requirements	
4.5.2	Method of test and required results	
	tch and scanning facilities	
4.6.1	Requirements	
4.6.2	Method of test and required results	
	lge alert management (BAM)	
4.7.1	Classification of BAM alerts	
4.7.2	Alert management	
	rt source identification and reporting in ALF sentence	
4.8.1	General requirements	
4.8.2	Receipt of distress or urgency call	
4.8.3	Receipt of calls other than distress or urgency	
4.8.4	No position data received by equipment	53
4.9 Sof	tware and firmware maintenance	
4.9.1	Requirements	55
4.9.2	Methods of testing and required test results	55
5 Technica	l characteristics	56
5.1 Ger	neral	56
5.1.1	Frequency	56
5.1.2	Calling sensitivity	57
5.1.3	Nominal modulation rate	57
5.1.4	Residual modulation	57
5.2 Tec	hnical format of a call sequence	
5.2.1	Requirements	
5.2.2	Method of test and required results	
	pansion sequence	
5.3.1	Requirements	
5.3.2	Methods of test and required results	
	ipment for the automatic/semi-automatic service	
5.4.1	Requirements	
5.4.2	Methods of test and required results	
	rmative) Digital interface sentence to parameter group number	00
	nice	60
•	rmative) DSC remote control communication	
•	neral	
	of AUC	
	of AUQ	
	of AUS	
	of CUL	
	of OCC	
	of EPV	
	hods of testing and required results	
B.8.1	General	
B.8.2	Standby information test	
B.8.3	Creating sending distress automated procedure test	
B.8.4	Receiving distress automated procedure test	
B.8.5	Create sending non-distress automated procedure test	
B.8.6	Receive non-distress automated procedure tests	
R 2 7	Communication automated procedure test	60

B.8.8 Multiple automated procedures test	70
Annex C (normative) Interface and automation requirements, methods of testing and required test results	71
C.1 General	71
C.2 Naming convention of DSC message types	71
C.3 Test setup	71
C.3.1 General	71
C.3.2 Test methods	73
C.4 Non automated features	73
C.4.1 Non automated features requirements	73
C.4.2 Non automated features tests	77
C.5 Standby	92
C.5.1 Standby requirements	92
C.5.2 Standby tests	94
C.6 Sending distress automated procedure	95
C.6.1 Sending distress automated procedure requirements	95
C.6.2 Sending distress automated procedure tests	101
C.7 Receiving distress automated procedure	109
C.7.1 Receiving distress automated procedure requirements	109
C.7.2 Receiving distress automated procedure tests	
C.8 Sending non-distress automated procedure	
C.8.1 Sending non-distress automated procedure requirements	
C.8.2 Sending non-distress automated procedure tests	
C.9 Receiving non-distress automated procedure	
C.9.1 Receiving non-distress automated procedure requirements	
C.9.2 Receiving non-distress automated procedure tests	
C.10 Communications automated procedure	
C.10.1 Communications automated procedure requirements	
C.10.2 Communications automated procedure tests	
C.11 Multiple automated procedures and parallel event handling	141
C.11.1 Multiple automated procedures and parallel event handling requirements	141
C.11.2 Multiple automated procedures and parallel event handling tests	142
C.12 Error handling in the automated procedures	152
C.12.1 Error handling requirements	152
C.12.2 Error handling tests	154
Annex D (normative) DSC message composition	158
D.1 Default values	158
D.2 The default DROBOSE	160
D.3 Allowable non-distress DSC message parameters	160
Annex E (normative) Radius-centre point conversion and rounding algorithm	161
E.1 Radius-centre point conversion	161
E.2 Rounding	162
E.3 Special cases for either form of area data entry	
Annex F (normative) Automated non-distress channel/frequency selection algorithm	163
F.1 General	163
F.2 VHF	
F.3 HF	
Annex G (normative) DSC message detection and decoding	164

Annex H ((normative) Audible annunciation and BAM alert signalling	166
H.1	Aural alert specifications	166
H.2	Alerting with critical errors	167
H.3	Default aural alert sounds	167
Annex I (r	normative) Shipborne watchkeeping receivers	169
I.1	General and operational requirements	169
1.1.1	General	
1.1.2	Construction	
1.2	Technical requirements	
1.2.1	Frequency bands and channels	
1.3	MF and MF/HF watchkeeping receiver	
1.3.1	Maximum usable sensitivity	
1.3.2	Adjacent channel selectivity	
1.3.3	Co-channel rejection	
1.3.4	RF intermodulation response	173
1.3.5	Spurious response rejection	
1.3.6	Blocking immunity	
1.3.7	Dynamic range	175
1.3.8	Conducted spurious emissions into the antenna	175
1.3.9	Protection of receiver antenna input circuits	176
1.3.10	Stop/start of scanning efficiency	176
1.4	VHF watchkeeping receiver	177
1.4.1	Maximum usable sensitivity	177
1.4.2	Adjacent channel selectivity	177
1.4.3	Co-channel rejection ratio	178
1.4.4	Intermodulation response	178
1.4.5	Spurious response rejection	179
1.4.6	Blocking immunity	180
1.4.7	Dynamic range	180
1.4.8	Conducted spurious emissions conveyed to the antenna	181
Annex J (normative) Shipborne VHF radiotelephone transmitter and receiver	182
J.1	General and operational requirements	
J.1.1	General	182
J.1.2	Composition	182
J.1.3	Frequency bands	182
J.1.4	Multiple watch facilities	182
J.2	Switching time	183
J.2.1	Requirement	183
J.2.2	Method of measurement	183
J.2.3	Results required	183
J.3	Transmitter	184
J.3.1	General	184
J.3.2	Frequency error	184
J.3.3	Carrier power	184
J.3.4	Frequency deviation	185
J.3.5	Limitation characteristics of the modulator	186
J.3.6	Sensitivity of modulator, including microphone	186
J.3.7	Audio frequency response	186
J.3.8	Audio frequency harmonic distortion of the emission	187

J.3.9	Adjacent channel power	188
J.3.10	Conducted spurious emissions conveyed to the antenna	189
J.3.11	Residual modulation of the transmitter	189
J.3.12	Transient frequency behaviour of the transmitter	190
J.3.13	Antenna VSWR integrity behaviour and monitor	191
J.4 Trai	nsmitter with integrated DSC encoder	
J.4.1	Frequency error (carrier)	191
J.4.2	Frequency error (demodulated signal)	
J.4.3	Carrier power	
J.4.4	Modulation index	193
J.4.5	Modulation rate	193
J.4.6	Residual modulation	193
J.4.7	Modulator attack time	194
J.4.8	Adjacent channel power	194
J.5 Red	eiver	
J.5.1	General	
J.5.2	Harmonic distortion and rated audio frequency output power	195
J.5.3	Audio frequency response	
J.5.4	Maximum usable sensitivity	
J.5.5	Amplitude response of the receiver limiter	
J.5.6	Co-channel rejection ratio	
J.5.7	Adjacent channel selectivity	
J.5.8	Spurious response rejection	
J.5.9	Intermodulation response	
J.5.10	Blocking immunity	
J.5.11	Conducted spurious emissions conveyed to the antenna	
J.5.12	Receiver hum and noise level	
J.5.13	Squelch operation	
J.5.14	Squelch hysteresis	
J.5.15	Scanning characteristics of multiple watch facilities	
	eiver with integrated DSC decoder	
	lex operation	
J.7.1	General	
J.7.2	Acoustic feedback	
J.7.3	Receiver desensitization with simultaneous transmission and reception	
J.7.4	(full-duplex operation)	
	Receiver spurious response rejection ctromagnetic compatibility	
J.8.1	Conducted spurious emission	
J.8.2	Radiated spurious emission	
J.8.3	Immunity to electromagnetic environment	
	ver measuring receiver specification	
J.9 FOW J.9.1	IF filter	
J.9.1 J.9.2	Attenuation indicator	
J.9.2 J.9.3	RMS value indicator	
J.9.3 J.9.4	Oscillator and amplifier	
	native) Shipborne MF and HF transmitters and receivers	
•		
	peral and operational requirements	
K.1.1	General	209

Composition	209
Frequency indication	209
Control panel priority	209
Labels	210
Classes of emission	210
Frequency bands	210
nsmitter	211
General	211
Frequency error for SSB telephony	211
Output power and intermodulation products for SSB telephony	211
Unwanted frequency modulation	213
Sensitivity of the microphone	213
Sensitivity of the 600 Ω line input for SSB telephony	214
Automatic level control and/or limiter for SSB telephony	
Audio frequency response using SSB telephony	215
• •	
·	
• •	
· · · · · · · · · · · · · · · · · · ·	
• •	
Power of out-of-band emission of DSC	
Power of conducted spurious emission of DSC	222
Modulation rate of DSC	
Switching time for NBDP	224
ceiver	225
Audio frequency output levels	225
• •	
·	
• •	
•	
,	
-	
·	
Maximum usable sensitivity	237
	Frequency indication Control panel priority Labels Classes of emission Frequency bands nsmitter General Frequency error for SSB telephony Output power and intermodulation products for SSB telephony Unwanted frequency modulation Sensitivity of the microphone Sensitivity of the 600 Ω line input for SSB telephony Automatic level control and/or limiter for SSB telephony Audio frequency response using SSB telephony Power of out-of-band emissions of SSB telephony Power of conducted spurious emissions of SSB telephony Residual hum and noise power for SSB telephony Carrier suppression Continuous operation on SSB telephony Insmitter with DSC encoder and NBDP Frequency error Output power Power of out-of-band emission of DSC Power of conducted spurious emission of DSC Residual frequency modulation of DSC Modulation rate of DSC Switching time for NBDP Seriver Audio frequency output levels Frequency error for SSB telephony Unwanted frequency modulation Audio frequency pass band Maximum usable sensitivity (MUS) Harmonic content in output Adjacent signal selectivity for J3E class of emission Blocking for J3E class of emission Intermodulation for J3E class of emission Blocking for J3E class of emission Intermodulation for J3E class of emission Reciprocal mixing Spurious response rejection ratio Audio frequency intermodulation Conducted spurious emissions into the antenna Internally generated spurious signals AGC efficiency. AGC time constants (attack and recovery time) Seriver with DSC decoder

K.5.2 Adjacent signal selectivity	237
K.5.3 Co-channel rejection	238
K.5.4 Intermodulation response	239
K.5.5 Spurious response rejection	239
K.5.6 Blocking immunity	241
K.5.7 Dynamic range	241
Annex L (informative) Relationship between bit error rate (BER) input and symbols error rate (SER) output	243
L.1 General	
L.2 Measurement of the relationship between BER at the input of a DSC	
decoder and the symbol error rate at the output of the decoder	243
L.3 Conclusion	244
Annex M (informative) Delays in equipment and its effect on narrow band direct printing (NBDP)	247
M.1 General	247
M.2 Short distance	
M.3 Long distance	247
Annex N (informative) Sentence to support DSC remote control	249
N.1 General	249
N.2 AUC – Automated procedure control	
N.3 AUQ – Automatic procedure query	251
N.4 AUS – Automated procedure status	252
N.5 CUL – Cyclic procedure list	256
N.6 ECI – Enhanced selective calling information	256
N.7 FSS – Frequency selection set	258
N.8 OCC – Occupation control	
Bibliography	261
Figure 1 – Interfaces of a DSC	33
Figure 2 – DSC Interface overview	36
Figure C.1 – Sending distress procedure	96
Figure C.2 – Receiving distress procedure	110
Figure C.3 – Sending non-distress automated procedure	
Figure C.4 – Receiving non-distress procedure	
Figure D.1 – Loading DSC defaults	
Figure E.1 – Circle-radius to lat-lon box	
Figure G.1 – Tests and error checks	
Figure J.1 – Modulation pre-emphasis curve (for a modulation index of 3, +1 dB –3 dB)	
Figure J.2 – Transient frequency behaviour test configuration	
Figure J.3 – Modulator attack time test configuration	
Figure J.4 – Receiver audio frequency response	
Figure J.5 – IF filter specification	
Figure K.1 – Limits for automatic level control	215
Figure K.2 – Limits for audio frequency response	216
Figure K.3 – Limits for unwanted emission (MF/HF transmitter)	222
Figure L.1 – Symbol error rate (%) versus bit error rate (%) – Individual call	244
Figure L.2 – Symbol error rate (%) versus bit error rate (%) – Distress call	245

Figure L.3 – Symbol error rate (%) versus bit error rate (%) – All ship call	246
Figure L.4 – Symbol error rate (%) versus transmitted calls – Distress call – EUT 1	246
Table 1 – Reference bandwidths applicable for spurious measurement	25
Table 2 – IEC 61162-1 sentences received by the DSC equipment for position information	34
Table 3 – IEC 61162-1 sentences transmitted by the DSC equipment	34
Table 4 – IEC 61162-1 sentences received by the DSC equipment	35
Table 5 – IEC 61162-1 sentences transmitted by the DSC equipment for BNWAS	35
Table 6 – IEC 61162-1 sentences transmitted by the DSC equipment for BAM	35
Table 7 – IEC 61162-1 sentences received by the DSC equipment for BAM	35
Table 8 – Classification of GMDSS equipment alerts for alert management purposes	48
Table 9 – Alert text in ALF sentence for cause Distress	51
Table 10 – Alert text in ALF sentence for cause Urgency	52
Table 11 – Alert text in ALF sentence for received calls other than Distress and Urgency	52
Table 12 – Alert text in ALF sentence for cause No position data received by equipment	
Table 13 – Alert text in ALF sentence for cause Antenna or Antenna tuner failure	54
Table 14 – Alert text in ALF sentence for cause Transmission power inhibit or failure	55
Table A 1 – Conversion from IEC 61162-1 to IEC 61162-3	60
Table B.1 – Property identifiers	62
Table C.1 – Geographic area tests	84
Table C.2 – DSC messages to send from the EUT	87
Table C.3 – DSC messages to send from the EUT	143
Table C.4 – DSC messages	148
Table C.5 – DSC messages	148
Table C.6 – DSC messages to send from the TE	150
Table D.1 – Default DROBOSE	160
Table D.2 – Allowable parameter combinations	160
Table H.1 – Audible characteristics	166
Table H.2 – Non configurable alert sounds	168
Table H.3 – Recommended alert sounds	168
Table J.1 – Selectivity characteristic	207
Table J.2 – Attenuation points close to carrier	207
Table J.3 – Attenuation points distant from carrier	208
Table K.1 – Distress frequencies	210
Table K.2 – Power of any out-of-band emission	217
Table K.3 – Power of any conducted spurious emission	218
Table K.4 – Power of any conducted spurious emission	223
Table K.5 – Power of any conducted spurious emission	228
Table K.6 – Adjacent signal selectivity	229
Table K 7 - Input level of the test signal	237

INTERNATIONAL ELECTROTECHNICAL COMMISSION

GLOBAL MARITIME DISTRESS AND SAFETY SYSTEM (GMDSS) -

Part 3: Digital selective calling (DSC) equipment – Operational and performance requirements, methods of testing and required testing results

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61097-3 has been prepared by IEC technical committee 80: Maritime navigation and radiocommunication equipment and systems.

This second edition cancels and replaces the first edition published in 1994. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) changes in the operation of DSC which have been developed by IMO and ITU since the first edition was published;
- b) compliance with bridge alert management (BAM);

- c) optional addition of remote operation of the DSC functionality. This facility can also used for type approval testing of the performance of the DSC equipment;
- d) incorporation of the radio frequency test methods for MF, MF/HF and VHF transceivers and watch receivers for convenience of testing.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
80/861/FDIS	80/866/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61097 series, published under the general title *Global maritime* distress and safety system (GMDSS), can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

GLOBAL MARITIME DISTRESS AND SAFETY SYSTEM (GMDSS) -

Part 3: Digital selective calling (DSC) equipment – Operational and performance requirements, methods of testing and required testing results

1 Scope

This part of IEC 61097 specifies the performance requirements, technical characteristics, operational requirements and methods of testing of shipborne DSC equipment for use with MF, MF/HF and VHF installations in the GMDSS, including those required by Chapter IV of the 1974 International Convention for Safety of Life at Sea (SOLAS) as amended, and is associated with IEC 60945 (Shipborne radio equipment forming part of the global maritime distress and safety system and marine navigational equipment).

This document incorporates applicable parts of the performance standards of IMO Resolutions A.803(19), A.804(19) and A.806(19) (DSC facilities for VHF, MF and MF/HF radio installations), IMO MSC/Circ.862 (describing the operation of the distress button), the provisions of the ITU Radio Regulations, the technical characteristics of DSC equipment and the operational procedures for its use contained in Recommendations ITU-R M.493, M.541, M.689, M.821 and M.1082, and takes into account the general requirements contained in IMO Resolution A.694(17).

Recommendation ITU-R M.493-14 describes classes A, B, D, E, H and M of DSC equipment. This document specifies test procedures for DSC equipment of Class A and B which are applicable to the SOLAS requirements:

Class A, which includes all of the facilities defined in Annex 1, 3 and 4 of Recommendation ITU-R M.493-14 and which will comply with the IMO GMDSS carriage requirements for MF/HF installations and/or VHF installations;

Class B, which provides minimum facilities for equipment on ships not required to use Class A equipment and which will comply with the minimum IMO GMDSS carriage requirements for MF and/or VHF installations.

This document also includes requirements and methods of testing for the RF part of the MF, MF/HF and VHF installations, specified in the annexes of this document for reference.

NOTE All text whose meaning is identical to that in IMO Resolution A.803(19), A.804(19), A.806(19), MSC.68(68), and to that in IMO Circular MSC/Circ.862, and to that in Recommendations ITU-R M.493, M.541, M 689, M.821, and M.1082 is printed in italics and the references indicated in brackets. Text referencing IMO Resolution A.803(19) includes references to A.804(19) and A.806(19) unless otherwise stated.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60945, Maritime navigation and radiocommunication equipment and systems - General requirements - Methods of testing and required test results

IEC 61162-1, Maritime navigation and radiocommunication equipment and systems - Digital interfaces - Part 1: Single talker and multiple listeners

IEC 61162-2, Maritime navigation and radiocommunication equipment and systems - Digital interfaces - Part 2: Single talker and multiple listeners, high-speed transmission

IEC 61162-450, Maritime navigation and radiocommunication equipment and systems - Digital interfaces - Part 450: Multiple talkers and multiple listeners - Ethernet interconnection

IEC 61162-460:2015, Maritime navigation and radiocommunication equipment and systems - Digital interfaces - Part 460: Multiple talkers and multiple listeners - Ethernet interconnection - Safety and security

IEC 62288, Maritime navigation and radiocommunication equipment and systems - Presentation of navigation-related information on shipborne navigational displays - General requirements, methods of testing and required test results

IEC 61924-2:2012, Maritime navigation and radiocommunication equipment and systems - Integrated navigation systems - Part 2: Modular structure for INS - Operational and performance requirements, methods of testing and required test results

Recommendation ITU-R M.493-14:2015, Digital selective-calling system for use in the maritime mobile service

Recommendation ITU-R M.541-10:2015, Operational procedures for use of digital selective-calling equipment in the maritime mobile service

Recommendation ITU-R M.689-3:2012, International maritime VHF radiotelephone system with automatic facilities based on DSC signalling format

Recommendation ITU-R M.821-1:1997, Optional expansion of the digital selective-calling system for use in the maritime mobile service

Recommendation ITU-R M.1084-5:2012, Interim solutions for improved efficiency in the use of the band 156-174 MHz by stations in the maritime mobile service

Recommendation ITU-R M.1082-1:1997, International maritime MF/HF radiotelephone system with automatic facilities based on digital selective calling signalling format

ITU Radio Regulations:2016

IMO Resolution A.694(17), General requirements for shipborne radio equipment forming part of the global maritime distress and safety system and for electronic navigational aids

IMO Resolution A.803(19), Performance standards for shipborne VHF radio installations capable of voice communication and digital selective calling, as amended by Resolution MSC.68(68):1997, Annex 1

IMO Resolution A.804(19), Performance standards for shipborne MF radio installations capable of voice communication and digital selective calling, as amended by Resolution MSC.68(68):1997, Annex 2

IMO Resolution A.806(19), Performance standards for shipborne MF/HF radio installations capable of voice communication, narrow-band direct-printing and digital selective calling, as amended by Resolution MSC.68(68):1997, Annex 3

IMO MSC.1/Circ.1389, Guidance on procedures for updating shipborne navigation and communication equipment

IMO MSC.68(68):1997, Adoption of amendments to performance standards for shipborne radiocommunication equipment

IMO MSC.191(79), Performance standards for the presentation of navigation-related information on shipborne navigational displays